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SOFT MATTER

PRACTICES 2
Surface energy: macroscopic description

1 Jurin’s law

When a narrow, cylindrical, glass tube of radius R is dipped vertically into a “wetting” liquid of
density ρ, the liquid level within the tube rises a height H above the free surface as a consequence
of surface tension (see Fig. 1). Jurin’s law relates the height of liquid H to the radius R of the
tube.

1. capillary tube: we assume that R� `c =
√
γ/(ρg). Show that the liquid-air interface in the

tube can be approximated as a spherical cap.

2. Derive Jurin’s law using three different methods:

• using hydrostatic law and Laplace’s law;

• using minimization of potential energy;

• using balance of forces.

Figure 1: Rise of liquid in a capillary tube

2 Capillary adhesion

A drop of water forms a capillary bridge between two parallel glass plates. Show that, when
gravity action is neglected, the plates experience an attractive force along the normal direction,
with amplitude:

F = γπR (2 sin θ + 2 cos θR/H − 1) ,

where H is the distance between the plates, R the radius of the axisymmetric bridge (taken at the
mid-distance between the plates), and γ the water(-air) surface tension.
Which is the dominant term in the limit H � R ?



3 Plateau-Rayleigh instability

A cylindrical column of liquid (e.g. water that springs from garden hose) spontaneously breaks
in spherical drops in order to reduce its total surface area. This instability is known as “Plateau-
Rayleigh instability”. We want to estimate the minimal wavelength of perturbations that can
induce a destabilization of the cylindrical geometry.

3.1 Rough estimation

1. Compare the lateral surface area of (1) a cylinder of volume V and radius R0
c , with the

total surface area of (2) N spherical drops of radius Rs and having same total volume, and
determine the minimal radius of the drops for which the surface energy of configuration (2)
is smaller than configuration (1).

2. Deduce a rough estimation of the minimal wavelength of a perturbation that destabilizes the
cylindrical column of liquid.

3.2 “Rigorous” treatment

We consider the following axisymmetric mode of perturbation of the cylindrical geometry: the
radius of the surface at abscissa x is given by:

rc(x) = Rc + δrc cos(k.x),

with k = 2π/λ.

1. Using volume conservation over one wavelength, show that Rc is related to the unperturbed
radius R0

c of the cylinder through:
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c
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.

2. Simplify this relation for small perturbations (δrc � R0
c).

3. Assuming again small perturbation amplitude, show that the variation of energy (per unit
wavelength) between the perturbed and unperturbed geometries is
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λ
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where γ is the surface tension.

4. Conclude that destabilizing modes satisfy λ > 2πR0
c .


