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The Lemlich law provides a simple estimate of the relative conductivity of a three-
dimensional foam, as one third of its liquid fraction. This is based on an expression
for the conductivity of a network of uniform wires (conducting lines). We show this
to be an exact upper bound for the conductivity, orientationally averaged in the case
of anisotropic systems. We discuss the dependance of conductivity on the geome-
try of the network structure and establish two necessary and sufficient conditions
to maximize the conductivity. We note the connection between this problem and
that of line-length minimization and also that between anisotropic conductivity and
stress for a two-dimensional foam. These results are illustrated by various numerical
simulations of network conductivities. The theorems presented in this paper may
also be applied to the thermal conductivity and the permeability of a network.
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1. Introduction

Recent interest in the conductivity of foams has led naturally to the theory of net-
works of uniform wires. Various approximations, detailed later in this paper, reduce
the idealized model of the foam to this form, particularly in the dry limit, in which
the liquid fraction, defined as the volume of liquid per unit volume of foam, becomes
small. In this way Lemlich (1978) produced a classic estimate of effective foam con-
ductivity σ, which is

σ

σliq
= 1

3φl. (1.1)

Here σliq is the conductivity of the liquid from which the foam is composed, and
φl is the liquid fraction. Numerous experiments (Chang & Lemlich 1980; Phelan et
al. 1996; Weaire & Hutzler 1999) have confirmed the approximate validity of the
Lemlich formula, in the dry limit. Extensions of this model at higher liquid fractions
were formulated by Agnihotri & Lemlich (1981) by including the contribution of the
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lamellae, and by Phelan et al. (1996) by including the contribution of the nodes
to the distribution of liquid and the effective conductivity of the foam. Since the
cross-section of a node is higher than the cross-section of a channel, this correction
increases the effective conductivity.

At the heart of Lemlich’s derivation is the following estimate for the conductivity
of a network composed of uniform wires (i.e. conducting lines) of resistance per unit
length r:

σ ≈ 1
3

l̂

r
(1.2)

This includes the parameter l̂, representing the line length of the network per unit
volume. In general, equation (1.2) has been adduced without any explanation of its
precise significance or conditions for being exact. It is the primary purpose of this
paper to supply such an analysis. We shall see that this equation may be written as
a general exact upper bound of the conductivity for such a network,

σ � 1
3

l̂

r
, (1.3)

and that equality is attained in various cases. We shall note several of these and
perform some numerical evaluations for cases in which the equality is not exact.

The inequality (1.3) applies on a network in a three-dimensional (3D) space, and
has to be replaced in the case of a network in a two-dimensional space by

σ � 1
2

l̂

r
. (1.4)

In what follows we shall concentrate on the case of a 3D network.
Various conditions are implicit in the above discussion. The homogeneity of the

network on some large scale is assumed, to enable σ to be defined. Also it is assumed
that the network has an isotropic conductivity. For ordered networks this is assured
by cubic symmetry (Dubrovin et al. 1992), and it is often assumed to be the case for a
typical disordered foam (see, however, the discussion of stress below). Alternatively,
inequality (1.3) may be taken to apply to the orientationally averaged conductivity
〈σ〉 (see Appendix A), whenever the conductivity is not isotropic.

Having identified the relevant formula (1.3) as an exact upper bound and seen
that it is also an excellent estimate in many cases, we shall discuss how it is used in
the case of a foam, to arrive at Lemlich’s formula, which may accordingly be viewed
as an approximate upper bound, in the dry limit.

2. Derivation of upper bound for network conductivity

We have in mind a network made of straight wires in three dimensions, as illustrated
by figure 1. Its conductivity may be bounded by use of the general method of ‘cut-
and-short’, due to Lord Rayleigh (Jeans 1925; Maxwell 1891; Rayleigh 1899). This
method is based on the following theorem (sometimes called the monotonicity law).

Theorem 2.1. If any of the resistances of a circuit are increased, the effective
resistance between any two points can only increase. If they are decreased, the effec-
tive resistance can only decrease.
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Lz

Lx

Ly

Figure 1. A 3D network composed of uniform wires of equal resistance per unit length r. Lx, Ly,
Lz are the macroscopic dimensions on which the effective conductivity tensor of the network is
defined.

This theorem is a consequence of the minimum Joule heating theorem (also called
Thomson’s principle). In terms appropriate to our case, this states that, for a given
steady total current, the distribution of currents corresponds to a minimum of dissi-
pation.

We reproduce here the proof of the monotonicity law (Jeans 1925; Maxwell 1891).

Proof . For a given circuit made of resistances rα carrying by currents iα, the total
dissipation is equal to ∑

α

rαi2α = RI2,

where R is the equivalent resistance and I the total current. Let us suppose that each
resistance is decreased from rα to r′

α. If we imagine that currents remain unaltered,
the new total dissipation would be

∑
α r′

αi2α, which is less than the preceding one. But
since the currents are not the real ones, the minimum of dissipation is not reached,
and if we now allow currents to distribute themselves in the correct way, there will
be a further decay of the dissipation. The new dissipative energy is∑

α

r′
αi′2α = R′I2,

where the i′α are the natural currents and R′ is the new equivalent resistance. It
follows that R′ � R. We can similarly prove that the increase in resistances in the
network will produce an increase in the total resistance. �

Note that Cohn’s theorem and Pezari’s theorem can give quantitatively the varia-
tion of the effective resistance of a network with the variations of resistances (Penfield
et al. 1970).
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The idea of Rayleigh was that shorting a circuit between two points is equivalent
to decreasing to zero the resistance between these two points, and consequently the
effective resistance of the circuit only decreases (or in special cases stays stationary).
Cutting the resistance between two points is equivalent to increasing the resistance
to infinity and cannot decrease the effective resistance of the network.

We can use the Rayleigh cut-and-short method as follows. The network is mod-
ified by shorting it with thin parallel sheets of infinite conductivity, perpendicular
to the direction x of the applied potential difference, and infinitesimally separated
from each other by ∆x. The resistance ∆R(x) of the network slice at position x is
attributable to the wires which cross it, acting in parallel, and can be easily evalu-
ated (see Appendix B). The equivalent resistance of the shorted network along the
x-direction is equal to the sum of the elementary resistive slices, and we can show
that this resistance (or equivalently its conductivity) is bounded as

σ(s)
x � 1

V

∑
(i,j)

lij
cos2 αij

r
, (2.1)

where V is the volume over which the effective conductivity tensor of the network is
defined, lij is the length of the wire (i, j) and αij is the angle between this wire and
the x-axis (for details see Appendix B). Indices (i) and (j) denote junctions, and the
sum is carried on all the wires that compose the network. From the monotonicity law,
it follows that the conductivity in the x-direction of the original network is always
less than the shorted network:

σx � σ(s)
x � 1

V

∑
(i,j)

lij
cos2 αij

r
. (2.2)

By using the same procedure in directions y and z, respectively, we obtain upper
bounds for conductivity along these two directions:

σy � σ(s)
y � 1

V

∑
(i,j)

lij
cos2 βij

r
, (2.3)

σz � σ(s)
z � 1

V

∑
(i,j)

lij
cos2 γij

r
, (2.4)

where βij and γij are the angles between the channel (i, j) and the two axes y and z
(defined such that cosβij � 0 and cos γij � 0). For any wire (i, j), the three director
cosines are related by

cos2 αij + cos2 βij + cos2 γij = 1, (2.5)

and so the averaged conductivity 〈σ〉 (defined in Appendix A) is bounded by

〈σ〉 � 1
3rV

∑
(i,j)

lij . (2.6)

The line length per unit volume of the network is equal to

l̂ =
1
V

∑
(i,j)

lij ;

Proc. R. Soc. Lond. A (2004)



Maximum electrical conductivity of a network of uniform wires 1273

thus, inequality (1.3) is proved for the case of a network made of straight wires. The
inequality also holds for a network made of curved wires, since curving one wire can
only increase the line length on one hand, and decrease the average conductivity of
the network (from the monotonicity law) on the other hand.

3. Conditions for exact equality

We have just shown that the averaged conductivity of a network is always smaller
than l̂/3r, where l̂ is its line length per unit volume, or equivalently the normalized
conductivity of any network, defined as 〈σ〉r/l̂, is bounded by the universal upper-
bound 1

3 . Now we want to determine under what conditions its upper bound is
attained. We shall show that the following two conditions are necessary and sufficient:

(a) all wires are straight;

(b) all junctions (i) between wires satisfy
∑

j eij = 0, where eij are outward-
pointing unit vectors in the directions of adjoining wires.

(a) Necessity of conditions (a) and (b)

We first prove the necessity of condition (a) as follows. Any infinitesimal change in
the geometry of the network will imply a variation d〈σ〉 of its averaged conductivity
and a variation dl̂ of its line length per unit volume. If the conductivity of the network
was at its maximum value before the geometrical change, from equation (2.6) it
follows that

d
(

〈σ〉
l̂

)
= 0, (3.1)

or, equivalently,

d〈σ〉 =
1
3r

dl̂. (3.2)

This equality has to be satisfied for any geometrical perturbation. Suppose the geo-
metrical change was the increase in the length of one given wire, all the other wires
and all the junctions staying unchanged. This can only increase the line length of the
network, so dl̂ � 0, and, from the monotonicity law, the averaged conductivity can
only decrease (since we increase the length of one wire, the others being unchanged)
and so d〈σ〉 � 0. As a consequence, both the conductivity and the line length have to
be stationary when the length of one wire is increased. We come to the same conclu-
sion by decreasing the length of one given wire. The only way that any infinitesimal
variation in the length of each wire does not change the line length of the network
is that all the wires are straight, and so condition (a) is a necessary condition.

The necessity of condition (b) is less obvious. To demonstrate the existence of an
upper bound of the conductivity in the x-direction, we used two successive inequali-
ties. Firstly, the conductivity of the network is less than the conductivity of the same
network intersected with zero resistance sheets. Secondly the conductivity of the net-
work intersected with zero resistance sheets is itself bounded, using the fact that the
equivalent resistance of N resistive elements in series arrangement is greater or equal
to the equivalent resistance of the same resistive elements in parallel arrangement
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times N2 (see Appendix B). So in order to get the exact upper bound, these two
inequalities have to become strict equalities. The first one implies that the presence
of sheets does not modify the distribution of potentials, and so the potential in the
wires is a function of x only. To see this, increase progressively the resistance of the
sheets up to infinity (corresponding to the initial network). From the monotonicity
law, this can only decrease the conductivity of the network. The only way for the
conductivity to stay at its maximum value while increasing the resistance of each
sheet is that there is no current through the sheets, and so the potential in the wires
is a function of x only.

The second equality requires that the resistances of every slice (of equal thickness)
are the same. Indeed, the resistance of a slice of arbitrary thickness x is simply
proportional to x, and it follows that the system is equivalent to a single uniform
resistor. Hence the potential is indeed linear in x.

Examination of Kirchhoff’s law (of charge conservation) at a vertex in a uniform
field immediately leads to condition (b), or rather a single component of this vector
equation: ∑

j

cos αij · sgn(xi − xj) = 0 (3.3)

(the term sgn(xi − xj), which gives ‘−1’, ‘0’ or ‘1’ depending on whether (xi − xj)
is negative, zero or positive, is introduced in order to satisfy cosαij � 0). The
arguments holds in the two other directions, so condition (b) is indeed required.

(b) Sufficiency of conditions (a) and (b)

We now prove the sufficiency of these conditions. Suppose a network for which
these conditions are satisfied, and upon which a potential difference Ux between its
two corresponding faces is applied, in the x-direction. We define the trial potential
function

Ψ = −Ux

Lx
x

at all points of the network, where Lx is the distance between the two electrodes.
We first check that Kirchhoff’s laws are satisfied under the conditions stated. The
first Kirchhoff law, which states that the sum of potential differences along a loop
is null, is naturally satisfied. The second law, which states that the sum of algebraic
currents in one junction is null, is also satisfied: the current in the straight wire (i, j)
is given by

Iij = −1
r
∇Ψ · eij =

Ux

rLx
ex · eij , (3.4)

so ∑
j

Iij =
Ux

rLx
ex ·

∑
j

eij = 0. (3.5)

The trial potential function also satisfies the boundary conditions, and so is the
correct physical solution.

We now check that the conductivity is equal to the upper bound. The potential
is uniform on planes parallel to the electrodes, and so the system is unaltered when
intersected by thin parallel sheets of infinite conductivity, perpendicular to the x-
direction. In Appendix B we calculate the elementary resistance ∆R(x) of a slice of
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thickness ∆x at position x for such a network (equation (B 1)). The global current Ix,
the elementary resistance ∆R(x) and the elementary potential difference ∆φ across
the slice are related by

∆Ψ

∆x
=

∆R

∆x
Ix. (3.6)

But here both the potential gradient and the global current are independent of x, and
this also applies for ∆R/∆x. Using equation (B 1) and integrating in the x-direction,
we obtain

Ix
L2

x

Ux
=

∑
(i,j)

lij
cos2 αij

r
. (3.7)

From this expression we get the expression of the conductivity in the direction x:

σx =
1
V

∑
(i,j)

lij
cos2 αij

r
. (3.8)

This value of the conductivity corresponds to the upper bound of the conductivity
along x, as expressed in equation (2.2). The same reasoning can be applied for the
conductivity in the two other directions, and so the sufficiency of conditions (a)
and (b) is proved.

(c) Remarks

We now comment on these necessary and sufficient conditions: it is remarkable that
the maximum of the conductivity of the network is independent of the connectivity of
the junctions: two networks with different topology but with the same line length per
unit volume and which both satisfy conditions (a) and (b) have the same averaged
conductivity (so the same conductivity if these networks are isotropic).

We have just established the two necessary and sufficient conditions on the geom-
etry of a network in order to maximize the normalized conductivity 〈σ〉r/l̂. It can
also be shown that they are necessary and sufficient conditions in order to have a
minimum of the line length per unit volume l̂ for a given topology. Furthermore, if
such a minimum exists, it is unique (Colthurst et al. 1993; Morgan 1994). So in a
class of networks with the same topology, the normalized conductivity reaches the
universal upper bound 1

3 (or equivalently, the averaged conductivity reaches its rel-
ative maximum value l̂/3r) when and only when the line length per unit volume is
minimum. This result is not obvious and cannot simply be drawn from the mono-
tonicity law: a small change of the position of a given junction from the minimal
line-length configuration implies an increase in the total line length, but some wires
reduce in length, whereas some others increase in theirs, and so the monotonicity
law is unable to predict the variation of the network conductivity.

Moreover, since the two conditions are necessary and sufficient to maximize 〈σ〉/l̂
and minimize l̂ for a fixed topology, they are also sufficient to make 〈σ〉 maximum
for this topology. However, it is not clear whether they are also necessary conditions
(we do not know if there exist stationary points of 〈σ〉 that are not stationary points
of 〈σ〉/l̂ or l̂, and we have to leave this point as an open question).
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4. Relevance to foam conductivity

Foam is a dispersion of a gaseous phase in a liquid (or in a solid) phase. In the
limit of dry foam, the liquid fraction, defined as the volume of liquid per unit of
foam volume, tends to zero. In this case, bubbles have polyhedral shapes and we
can distinguish three different geometrical elements in the foam structure: lamellae,
channels (or Plateau borders), which are junction of lamellae, and nodes, which are
junctions of channels. At the end of the nineteenth century the Belgian physicist
J. A. F. Plateau studied the structure of such foams, and discovered the following
geometrical rules for equilibrium (Plateau 1873).

(i) Only three lamellae are joined in one channel, the angle between two lamellae
being 120◦.

(ii) Only four channels are joined in one node in a tetrahedral configuration (the
angle between two channels being arccos(−1

3) � 109.5◦).

A third condition is imposed by the Laplace pressure/curvature relation for the
films, but it does not concern us directly here. In the dry limit, the transverse cur-
vature dominates and is equal throughout the network of channels. In consequence,
the dry foam can be considered as an electrical network of interconnected wires, the
resistance of each wire being proportional to the length of the corresponding Plateau
border. The liquid fraction φl of the foam can also be related to its line length per
unit volume by

φl = sl̂, (4.1)

where s is the cross-sectional area of Plateau borders. Using equation (1.3), it follows
that the conductivity of the foam is bounded in the following way:

σ

σliq
� 1

3φl. (4.2)

Note that the necessary and sufficient condition (b) is always fulfilled in a foam
in the dry limit, in which the Plateau borders become thin, due to the geometrical
structure imposed by Plateau’s laws. So the difference between the real value of
the conductivity in the dry limit and the maximum value is due to the curvature
of channels only. As the difference in pressure between adjacent bubbles is at the
origin of curvature of the channels, we can expect that the conductivity of a quiet
monodisperse foam is close to the upper bound value, which has been experimentally
confirmed (Phelan et al. 1996). The curvature in question is inevitable in foams:
Plateau’s laws cannot be fully satisfied without them (Weaire & Hutzler 1999).

5. Examples

(a) Straight-line networks

We present various periodic networks made of straight wires and compare their con-
ductivities with the upper bound. The basic mesh of the first network is the truncated
cube. Its conductivity can be obtained analytically. The second and third networks
are based on the Weaire–Phelan mesh and the Friauf–Laves mesh, respectively, and,
due to the complexity of their structures, distributions of currents and potentials
(Kirchhoff’s laws) are found using Mathematica.
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l1l2

L

Figure 2. Structure of the truncated cube. The two different channel lengths
l1 and l2 are related to the mesh length L by l1 +

√
2l2 = L.

(i) Truncated cube

The basic mesh of this isotropic network is depicted in figure 2.
The two different channel lengths l1 and l2 are related to the length of the mesh

L by

L = l1 +
√

2l2. (5.1)

We can easily obtain the conductivity of this network:

σ =
1

RL
=

1
(l1 + 1

2 l2)rL
. (5.2)

Equation (5.2) can be rewritten in terms of the function of the line length,

l̂ =
3l1 + 12l2

L3 ,

as

σ =
L2 l̂

r(3l1 + 12l2)(l1 + 1
2 l2)

. (5.3)

In figure 3, we plot
σr

Ll̂

versus l1/L. We can see that the function is always less than 1
3 , and equal to 1

3 in the
two limits l1 = 0 and l1 = L, which correspond to the cube-octahedral cell and the
cubic cell, respectively. For these two cases condition (b) is fulfilled, so the Lemlich
bound is attained.
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Figure 3. Graph of σr/Ll̂ versus l1/L for a network made of truncated cubes. The function is
always less than 1

3 , and equal to 1
3 in the two limits l1 = 0 and l1 = L, which correspond to

the cubo-octahedral cell and the cubic cell, respectively. For these two cases condition (b) is
fulfilled.

 

Figure 4. The Weaire–Phelan structure.

(ii) Weaire–Phelan mesh

The unit crystallographic mesh, depicted in figure 4, is composed of two polyhedra
with 12 faces and six polyhedra with 14 faces (Weaire & Phelan 1994). The network
is isotropic and the wires are straight and meet at a fourfold junction (as in a real
foam) with angles which do not quite fulfil condition (b). Thus, we can expect that
the conductivity of this network is only slightly less than the conductivity given
by the Lemlich relation. Solving with Mathematica, we find the following relation
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Figure 5. The Friauf–Laves structure.

between the effective conductivity and the line length per unit volume (Durand 2002):

σ = 0.331
l̂

r
. (5.4)

(iii) Friauf–Laves mesh

The unit crystallographic mesh is depicted in figure 5 and is composed of four poly-
hedra with 12 faces and two polyhedra with 16 faces. As for the previous structure,
the network is isotropic and the wires are straight and meet at fourfold junction with
angles slightly different from arccos(−1

3). The relation obtained between the effective
conductivity and the line length per unit volume is again (Durand 2002)

σ = 0.331
l̂

r
. (5.5)

(b) The Kelvin cell and Kelvin foam structure

It is also interesting to calculate the conductivity of the periodic network for which
the unit mesh is the well-known Kelvin cell (or tetrakaidecahedron). This satisfies
both conditions (a) and (b). Thus, the conductivity of this network is equal to the
upper bound, as is easily checked by analytic solution of its conductivity. Although
this structure does not satisfy Plateau’s laws, it is still possible (as Lord Kelvin
noticed (Thomson 1887)) to distort the faces (and edges) of the cells in such a way
as to achieve this. Furthermore, the change of length is the same for all of the wires.
The obtained structure is called ‘Kelvin foam’ (see figure 6). Let us call ls and ss
the length and the cross-section of a straight wire, and lc, sc the length and the
cross-section of a curved wire, respectively. The equivalent resistance of each kind
of cell is proportional to the resistance of one wire of which the cell is composed,
the constant of proportionality being the same, since the topology is unchanged. If
Rs is the equivalent resistance of the cell made of straight wires, ls the length of a
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Figure 6. A Kelvin foam: the faces and the edges of each cell
are curved in order to satisfy Plateau’s laws.

straight wire, and ss the cross-section of a straight wire, and Rc, lc, sc are the same
quantities associated with the curved wires, then

Rs

Rc
=

lssc

lcss
. (5.6)

If the transformation from one structure to the other is done while keeping a constant
liquid fraction, then lsss = lcsc and so the ratio of conductivities of the two structures
is given by

σc

σs
=

(
ls
lc

)2

. (5.7)

The ratio of conductivities thus varies as the square of the ratio of length wires.
Numerical estimation of the ratio ls/lc has been carried out by Princen & Levinson
(1987): for cells of equal volume, they obtained ls/lc = 1.154 70/1.159 64 ≈ 0.995 74
and so the ratio of conductivities is

σc

σs
≈ 0.991 50. (5.8)

6. Conclusions

We have established the existence of an upper bound for the averaged conductivity
of a network made of resistive wires. The value of this upper bound is l̂/3r, where
l̂ is the line length per unit volume of the network, and r is the resistance per unit
wire length. We have also established the two necessary and sufficient conditions on
the geometry of the network structure to reach the upper bound of conductivity:
all the wires are straight and each junction (i) between wires satisfies

∑
j eij = 0,

where eij are outward-pointing unit vectors in the directions of adjoining wires.
These two conditions also correspond to the necessary and sufficient conditions to
have a minimum of the total line length of the network, for a fixed topology. It is
perhaps surprising that the significance of the Lemlich law as an upper bound has
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escaped general notice up to this point (the use of the word ‘limiting’ in the title of
Lemlich’s paper refers only to the dry limit). However, while it is simply stated and
understood, the general proof of law this does contain a number of technicalities,
which are multiplied when the necessary and sufficient conditions for attainment of
the bound are addressed, as here.

Knowledge of the relevant theorems is helpful in understanding why the Lemlich
estimate works extremely well for realistic foam structures: they are very close to
satisfying the conditions for exactness of the Lemlich estimate.

Real foams are often anisotropic (although this fact is commonly disregarded). This
is because they have the distinctive property of accommodating very large strains
in equilibrium, before reaching a yield stress. Under such strain, the structure, and
hence the conductivity, becomes anisotropic. If we accept the Lemlich estimates of
the components of anisotropic conductivity, this becomes closely related to stress in
the case of a 2D foam, as conductivity and stress are related to the average of cos2 θ.
A direct relation between these two physical quantities then follows, which should
offer an interesting topic for a future experiment.

There is also scope for the extension of the results given here to related models,
of relevance to the physics of foams. These include the case when a resistance is
associated with each vertex, to represent the effects of finite liquid fraction (Phelan
et al. 1996). Another model assigns conduction to the films, rather than the Plateau
borders, and all three ingredients can be combined in an approximate but quite
comprehensive model. These directions will be developed in future work.

The authors gratefully acknowledge Frank Morgan, for stimulating discussions on the necessary
and sufficient conditions of the line length, as well as Dominique Langevin and Guy Verbist.
D.W. acknowledges research support by ESA and Enterprise Ireland.

Appendix A. Averaged conductivity of a non-isotropic network

We define the averaged conductivity 〈σ〉 of a medium as the constant of propor-
tionality between the averaged dissipated energy per unit volume and unit time 〈P 〉
and the square of the external electric field modulus |E|2 when averaged on all the
directions of the electric field (or equivalently of the medium):

〈P 〉 = 〈σ〉|E|2. (A 1)

The density of dissipative energy per unit time is

P = j · E = E · [σ]E = |E|2u · [σ]u, (A 2)

where [σ] is the symmetrical conductivity tensor and u is the unit vector along the
electric field. Then, by averaging,

〈σ〉 =
1
4π

∫∫
u · [σ]u dω =

1
4π

∑
i,j

σij

∫∫
uiuj dω = 1

3

∑
i,j

σijδij , (A 3)

where dω is the elementary solid angle, σij are the components of the conductivity
tensor and ui the components of u. The averaged conductivity can be rewritten in
terms of the function of the trace of the conductivity tensor:

〈σ〉 = 1
3 Tr([σ]). (A 4)
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Figure 7. The contribution of the wire (i, j) to the conductance of
a ‘network slice’, of thickness ∆x, is cos αij/(r∆x).

This result is not really surprising: 〈σ〉 can only be a function of the trace and the
determinant of the tensor, which are the two invariants by changing the basis. But
only the trace has the dimension of conductivity.

Appendix B. Upper bound of the conductivity of a network
shorted with parallel sheets of infinite conductivity

We imagine a network made of straight wires with thin parallel sheets of infinite
conductivity, perpendicular to the x-direction of the applied potential difference,
and infinitesimally separated from each other by ∆x. The potential is uniform on
each sheet. The resistance ∆R(x) of the network slice at position x corresponds to
the parallel association of the truncated resistive wires that it contains (we adjust the
sheets in such a way that slices contain no junction). The resistance corresponding
to the truncated channel (i, j) is equal to r∆x/ cos αij , where r is the resistance per
unit length of wire and αij is the angle between the channel (i, j) and the x-axis, as
depicted in figure 7 (the angle is defined such that cosαij � 0):

1
∆R(x)

=
∑
(i,j)

P (x, xi, xj)
cos αij

r∆x
, (B 1)

where P (x, xi, xj) is a function which is unity if the channel (i, j) is intersected by
the equipotential plane passing by x and zero otherwise:

P (x, xi, xj) =

{
1 if min(xi, xj) � x � max(xi, xj),
0 elsewhere.

(B 2)
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The total resistance is given by the sum of slice resistances. We call N = Lx/∆x the
number of slices (Lx is the length of the network in direction x on which the effective
conductivity of the network is defined. For example, if the network is periodic, Lx is
the spatial period along x). Thus,

Rx =
N∑

k=1

∆R

(
x = (k − 1)

Lx

N

)
. (B 3)

Now we need to use the following result.
If {f1, f2, . . . , fN} is a set of N real positive values, then

〈fk〉〈f−1
k 〉 � 1, (B 4)

where

〈fk〉 =
1
N

N∑
k=1

fk, 〈f−1
k 〉 =

1
N

N∑
k=1

1
fk

.

Moreover, it can be easily shown that the strict equality is attained when f1 =
f2 = · · · = fN only.

Using this theorem on the sum of equation (B 3), we obtain the inequality

1
Rx

�
N∑

k=1

∑
(i,j)

P

(
(k − 1)

Lx

N
, xi, xj

)
cos αij

r

∆x

L2
x

. (B 5)

In the limit of indefinitely small ∆x, the first sum in the right-hand term is substi-
tuted by an integral,

1
Rx

�
∫ ∞

0

∑
(i,j)

P (x, xi, xj)
cos αij

r

dx

L2
x

. (B 6)

We can switch the sum and the integral of this expression, and it follows after
integration that

1
Rx

� 1
L2

x

∑
(i,j)

lij
cos2 αij

r
. (B 7)

The conductivity of the shorted network in the x-direction is defined by

σ(s)
x =

Lx

LyLzRx
,

where Ly and Lz are network lengths in directions y and z. Thus,

σ(s)
x � 1

V

∑
(i,j)

lij
cos2 αij

r
, (B 8)

where V = LxLyLz is the volume occupied by the network.
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